Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(3): 2480-2496, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534773

RESUMO

In the present work, we evaluated the antifungal activities of two novel ebselen analogs, N-allyl-benzisoselenazol-3(2H)-one (N-allyl-bs) and N-3-methylbutylbenzisoselenazol-3(2H)-one (N-3mb-bs). Colorimetric and turbidity assays were performed to determine the minimum inhibitory concentration (MIC) of these compounds in S1 (fluconazole-sensitive) and S2 (fluconazole-resistant) strains of C. albicans. N-3mb-bs was more active than the N-allyl-bs compound. It is noteworthy that the concentration of N-3mb-bs observed to inhibit fungal growth by 50% (18.2 µM) was similar to the concentration observed to inhibit the activity of the yeast plasma membrane H+-ATPase (Pma1p) by 50% (19.6 µM). We next implemented a mouse model of vulvovaginal candidiasis (VVC) using the S1 strain and examined the mouse and yeast proteins present in the vaginal lavage fluid using proteomics. The yeast proteins detected were predominately glycolytic enzymes or virulence factors associated with C. albicans while the mouse proteins present in the lavage fluid included eosinophil peroxidase, desmocollin-1, and gasdermin-A. We then utilized the N-3mb-bs compound (12.5 mg/kg) in the mouse VVC model and observed that it significantly reduced the vaginal fungal burden, histopathological changes in vagina tissue, and expression of myeloperoxidase (MPO). All in all, the present work has identified a potentially promising drug candidate for VVC treatment.

2.
Am J Physiol Renal Physiol ; 326(1): F143-F151, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942538

RESUMO

There is growing consensus that under physiological conditions, collecting duct H+ secretion is independent of epithelial Na+ channel (ENaC) activity. We have recently shown that the direct ENaC inhibitor benzamil acutely impairs H+ excretion by blocking renal H+-K+-ATPase. However, the question remains whether inhibition of ENaC per se causes alterations in renal H+ excretion. To revisit this question, we studied the effect of the antibiotic trimethoprim (TMP), which is well known to cause K+ retention by direct ENaC inhibition. The acute effect of TMP (5 µg/g body wt) was assessed in bladder-catheterized mice, allowing real-time measurement of urinary pH, electrolyte, and acid excretion. Dietary K+ depletion was used to increase renal H+-K+-ATPase activity. In addition, the effect of TMP was investigated in vitro using pig gastric H+-K+-ATPase-enriched membrane vesicles. TMP acutely increased natriuresis and decreased kaliuresis, confirming its ENaC-inhibiting property. Under control diet conditions, TMP had no effect on urinary pH or acid excretion. Interestingly, K+ depletion unmasked an acute urine alkalizing effect of TMP. This finding was corroborated by in vitro experiments showing that TMP inhibits H+-K+-ATPase activity, albeit at much higher concentrations than benzamil. In conclusion, under control diet conditions, TMP inhibited ENaC function without changing urinary H+ excretion. This finding further supports the hypothesis that the inhibition of ENaC per se does not impair H+ excretion in the collecting duct. Moreover, TMP-induced urinary alkalization in animals fed a low-K+ diet highlights the importance of renal H+-K+-ATPase-mediated H+ secretion in states of K+ depletion.NEW & NOTEWORTHY The antibiotic trimethoprim (TMP) often mediates K+ retention and metabolic acidosis. We suggest a revision of the underlying mechanism that causes metabolic acidosis. Our results indicate that TMP-induced metabolic acidosis is secondary to epithelial Na+ channel-dependent K+ retention. Under control dietary conditions, TMP does not per se inhibit collecting duct H+ secretion. These findings add further argument against a physiologically relevant voltage-dependent mechanism of collecting duct H+ excretion.


Assuntos
Acidose , Túbulos Renais Coletores , Camundongos , Animais , Suínos , Trimetoprima/farmacologia , Trimetoprima/metabolismo , Túbulos Renais Coletores/metabolismo , Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Antibacterianos/farmacologia , Acidose/metabolismo
3.
Molecules ; 28(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959796

RESUMO

In the present work, a series of N-terpenyl organoselenium compounds (CHB1-6) were evaluated for antimycotic activity by determining the minimum inhibitory concentration (MIC) for each compound in fluconazole (FLU)-sensitive (S1) and FLU-resistant (S2) strains of Candida albicans (C. albicans). The most active compounds in the MIC screen were CHB4 and CHB6, which were then evaluated for cytotoxicity in human cervical cancer cells (KB-3-1) and found to be selective for fungi. Next, CHB4 and CHB6 were investigated for skin irritation using a reconstructed 3D human epidermis and both compounds were considered safe to the epidermis. Using a mouse model of vulvovaginal candidiasis (VVC), CHB4 and CHB6 both exhibited antimycotic efficacy by reducing yeast colonization of the vaginal tract, alleviating injury to the vaginal mucosa, and decreasing the abundance of myeloperoxidase (MPO) expression in the tissue, indicating a reduced inflammatory response. In conclusion, CHB4 and CHB6 demonstrate antifungal activity in vitro and in the mouse model of VVC and represent two new promising antifungal agents.


Assuntos
Candidíase Vulvovaginal , Feminino , Humanos , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/metabolismo , Candidíase Vulvovaginal/microbiologia , Antifúngicos/metabolismo , Fluconazol/farmacologia , Candida albicans , Vagina/microbiologia , Testes de Sensibilidade Microbiana
4.
RSC Adv ; 13(49): 34836-34846, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38035247

RESUMO

Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details of unstable or reactive small molecular ligands in their physiological sites. This work demonstrates that 13C chemical shifts measured by magic-angle spinning (MAS) solid-state NMR (SSNMR) provide unique information on the conformation of a labile ligand in the physiological site of a functional protein in its native membrane, by exploiting freeze-trapping to stabilise the complex. We examine the ribose conformation of ATP in a high affinity complex with Na,K-ATPase (NKA), an enzyme that rapidly hydrolyses ATP to ADP and inorganic phosphate under physiological conditions. The 13C SSNMR spectrum of the frozen complex exhibits peaks from all ATP ribose carbon sites and some adenine base carbons. Comparison of experimental chemical shifts with density functional theory (DFT) calculations of ATP in different conformations and protein environments reveals that the ATP ribose ring adopts an C3'-endo (N) conformation when bound with high affinity to NKA in the E1Na state, in contrast to the C2'-endo (S) ribose conformations of ATP bound to the E2P state and AMPPCP in the E1 complex. Additional dipolar coupling-mediated measurements of H-C-C-H torsional angles are used to eliminate possible relative orientations of the ribose and adenine rings. The utilization of chemical shifts to determine membrane protein ligand conformations has been underexploited to date and here we demonstrate this approach to be a powerful tool for resolving the fine details of ligand-protein interactions.

5.
J Biol Chem ; 299(2): 102811, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36539036

RESUMO

The Na+/K+-ATPase is an integral plasma membrane glycoprotein of all animal cells that couples the exchange of intracellular Na+ for extracellular K+ to the hydrolysis of ATP. The asymmetric distribution of Na+ and K+ is essential for cellular life and constitutes the physical basis of a series of fundamental biological phenomena. The pumping mechanism is explained by the Albers-Post model. It involves the presence of gates alternatively exposing Na+/K+-ATPase transport sites to the intracellular and extracellular sides and includes occluded states in which both gates are simultaneously closed. Unlike for K+, information is lacking about Na+-occluded intermediates, as occluded Na+ was only detected in states incapable of performing a catalytic cycle, including two Na+-containing crystallographic structures. The current knowledge is that intracellular Na+ must bind to the transport sites and become occluded upon phosphorylation by ATP to be transported to the extracellular medium. Here, taking advantage of epigallocatechin-3-gallate to instantaneously stabilize native Na+-occluded intermediates, we isolated species with tightly bound Na+ in an enzyme able to perform a catalytic cycle, consistent with a genuine occluded state. We found that Na+ becomes spontaneously occluded in the E1 dephosphorylated form of the Na+/K+-ATPase, exhibiting positive interactions between binding sites. In fact, the addition of ATP does not produce an increase in Na+ occlusion as it would have been expected; on the contrary, occluded Na+ transiently decreases, whereas ATP lasts. These results reveal new properties of E1 intermediates of the Albers-Post model for explaining the Na+ transport pathway.


Assuntos
Biocatálise , ATPase Trocadora de Sódio-Potássio , Sódio , Animais , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Cinética , Potássio/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Transporte de Íons , Fosforilação , Cátions Monovalentes/metabolismo
6.
J Biol Chem ; 298(9): 102317, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35926706

RESUMO

The Na+,K+-ATPase generates electrochemical gradients of Na+ and K+ across the plasma membrane via a functional cycle that includes various phosphoenzyme intermediates. However, the structure and function of these intermediates and how metal fluorides mimick them require further investigation. Here, we describe a 4.0 Å resolution crystal structure and functional properties of the pig kidney Na+,K+-ATPase stabilized by the inhibitor beryllium fluoride (denoted E2-BeFx). E2-BeFx is expected to mimic properties of the E2P phosphoenzyme, yet with unknown characteristics of ion and ligand binding. The structure resembles the E2P form obtained by phosphorylation from inorganic phosphate (Pi) and stabilized by cardiotonic steroids, including a low-affinity Mg2+ site near ion binding site II. Our anomalous Fourier analysis of the crystals soaked in Rb+ (a K+ congener) followed by a low-resolution rigid-body refinement (6.9-7.5 Å) revealed preocclusion transitions leading to activation of the dephosphorylation reaction. We show that the Mg2+ location indicates a site of initial K+ recognition and acceptance upon binding to the outward-open E2P state after Na+ release. Furthermore, using binding and activity studies, we find that the BeFx-inhibited enzyme is also able to bind ADP/ATP and Na+. These results relate the E2-BeFx complex to a transient K+- and ADP-sensitive E∗P intermediate of the functional cycle of the Na+,K+-ATPase, prior to E2P.


Assuntos
Berílio , Glicosídeos Cardíacos , Fluoretos , Rim , ATPase Trocadora de Sódio-Potássio , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Berílio/química , Glicosídeos Cardíacos/química , Fluoretos/química , Rim/enzimologia , Cinética , Fosfatos/metabolismo , Fosforilação , Domínios Proteicos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , Suínos
7.
Compr Physiol ; 12(1): 2659-2679, 2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34964112

RESUMO

Na,K-ATPase is an ubiquitous enzyme actively transporting Na-ions out of the cell in exchange for K-ions, thereby maintaining their concentration gradients across the cell membrane. Since its discovery more than six decades ago the Na-pump has been studied extensively and its vital physiological role in essentially every cell has been established. This article aims at providing an overview of well-established biochemical properties with a focus on Na,K-ATPase isoforms, its transport mechanism and principle conformations, inhibitors, and insights gained from crystal structures. © 2021 American Physiological Society. Compr Physiol 11:1-21, 2021.


Assuntos
ATPase Trocadora de Sódio-Potássio , Sódio , Membrana Celular/metabolismo , Humanos , Íons/metabolismo , Potássio/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
Biophys J ; 120(13): 2679-2690, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34087213

RESUMO

Spin labels based on cinobufagin, a specific inhibitor of the Na,K-ATPase, have proved valuable tools to characterize the binding site of cardiotonic steroids (CTSs), which also constitutes the extracellular cation pathway. Because existing literature suggests variations in the physiological responses caused by binding of different CTSs, we extended the original set of spin-labeled inhibitors to the more potent bufalin derivatives. Positioning of the spin labels within the Na,K-ATPase site was defined and visualized by molecular docking. Although the original cinobufagin labels exhibited lower affinity, continuous-wave electron paramagnetic resonance spectra of spin-labeled bufalins and cinobufagins revealed a high degree of pairwise similarity, implying that these two types of CTS bind in the same way. Further analysis of the spectral lineshapes of bound spin labels was performed with emphasis on their structure (PROXYL vs. TEMPO), as well as length and rigidity of the linkers. For comparable structures, the dynamic flexibility increased in parallel with linker length, with the longest linker placing the spin label at the entrance to the binding site. Temperature-related changes in spectral lineshapes indicate that six-membered nitroxide rings undergo boat-chair transitions, showing that the binding-site cross section can accommodate the accompanying changes in methyl-group orientation. D2O-electron spin echo envelope modulation in pulse-electron paramagnetic resonance measurements revealed high water accessibilities and similar polarity profiles for all bound spin labels, implying that the vestibule leading to steroid-binding site and cation-binding sites is relatively wide and water-filled.


Assuntos
ATPase Trocadora de Sódio-Potássio , Água , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Simulação de Acoplamento Molecular , ATPase Trocadora de Sódio-Potássio/metabolismo , Marcadores de Spin
9.
Am J Physiol Renal Physiol ; 320(4): F596-F607, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33554781

RESUMO

Epithelial Na+ channel (ENaC) blockers elicit acute and substantial increases of urinary pH. The underlying mechanism remains to be understood. Here, we evaluated if benzamil-induced urine alkalization is mediated by an acute reduction in H+ secretion via renal H+-K+-ATPases (HKAs). Experiments were performed in vivo on HKA double-knockout and wild-type mice. Alterations in dietary K+ intake were used to change renal HKA and ENaC activity. The acute effects of benzamil (0.2 µg/g body wt, sufficient to block ENaC) on urine flow rate and urinary electrolyte and acid excretion were monitored in anesthetized, bladder-catheterized animals. We observed that benzamil acutely increased urinary pH (ΔpH: 0.33 ± 0.07) and reduced NH4+ and titratable acid excretion and that these effects were distinctly enhanced in animals fed a low-K+ diet (ΔpH: 0.74 ± 0.12), a condition when ENaC activity is low. In contrast, benzamil did not affect urine acid excretion in animals kept on a high-K+ diet (i.e., during high ENaC activity). Thus, urine alkalization appeared completely uncoupled from ENaC function. The absence of benzamil-induced urinary alkalization in HKA double-knockout mice confirmed the direct involvement of these enzymes. The inhibitory effect of benzamil was also shown in vitro for the pig α1-isoform of HKA. These results suggest a revised explanation of the benzamil effect on renal acid-base excretion. Considering the conditions used here, we suggest that it is caused by a direct inhibition of HKAs in the collecting duct and not by inhibition of the ENaC function.NEW & NOTEWORTHY Bolus application of epithelial Na+ channel (EnaC) blockers causes marked and acute increases of urine pH. Here, we provide evidence that the underlying mechanism involves direct inhibition of the H+-K+ pump in the collecting duct. This could provide a fundamental revision of the previously assumed mechanism that suggested a key role of ENaC inhibition in this response.


Assuntos
Amilorida/análogos & derivados , Canais Epiteliais de Sódio/efeitos dos fármacos , ATPase Trocadora de Hidrogênio-Potássio/efeitos dos fármacos , Sódio/metabolismo , Amilorida/farmacologia , Animais , Canais Epiteliais de Sódio/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Túbulos Renais Coletores/metabolismo , Camundongos , Natriurese/efeitos dos fármacos , Eliminação Renal/efeitos dos fármacos , Eliminação Renal/fisiologia , Sódio na Dieta/metabolismo
10.
J Chem Inf Model ; 61(2): 976-986, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33502848

RESUMO

Kinetic properties and crystal structures of the Na+,K+-ATPase in complex with cardiotonic steroids (CTS) revealed significant differences between CTS subfamilies (Laursen et al.). Thus, we found beneficial effects of K+ on bufadienolide binding, which strongly contrasted with the well-known antagonism between K+ and cardenolides. In order to understand this peculiarity of bufalin interactions, we used docking and molecular dynamics simulations of the complexes involving Na+,K+-ATPase, bufadienolides (bufalin, cinobufagin), and ions (K+, Na+, Mg2+). The results revealed that bufadienolide binding is affected by (i) electrostatic attraction of the lactone ring by a cation and (ii) the ability of a cation to stabilize and "shape" the site constituted by transmembrane helices of the α-subunit (αM1-6). The latter effect was due to varying coordination patterns involving amino acid residues from helix bundles αM1-4 and αM5-10. Substituents on the steroid core of a bufadienolide add to and modify the cation effects. The above rationale is fully consistent with the ion effects on the kinetics of Na+,K+-ATPase/bufadienolide interactions.


Assuntos
Bufanolídeos , Ouabaína , Cátions , ATPase Trocadora de Sódio-Potássio/metabolismo
11.
FEBS J ; 285(12): 2292-2305, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29688626

RESUMO

The information obtained from crystallized complexes of the Na+ ,K+ -ATPase with cardiotonic steroids (CTS) is not sufficient to explain differences in the inhibitory properties of CTS such as stereoselectivity of CTS binding or effect of glycosylation on the preference to enzyme isoforms. The uncertainty is related to the spatial organization of the hydrophilic cavity at the entrance of the CTS-binding site. Therefore, there is a need to supplement the crystallographic description with data obtained in aqueous solution, where molecules have significant degree of flexibility. This work addresses the applicability of the electron paramagnetic resonance (EPR) method for the purpose. We have designed and synthesized spin-labeled compounds based on the cinobufagin steroid core. The length of the spacer arms between the steroid core and the nitroxide group determines the position of the reporting group (N-O) confined to the binding site. High affinity to Na+ ,K+ -ATPase is inferred from their ability to inhibit enzymatic activity. The differences between the EPR spectra in the absence and presence of high ouabain concentrations identify the signature peaks originating from the fraction of the spin labels bound within the ouabain site. The degree of perturbations of the EPR spectra depends on the length of the spacer arm. Docking of the compounds into the CTS site suggests which elements of the protein structure might be responsible for interference with the spin label (e.g., steric clashes or immobilization). Thus, the method is suitable for gathering information on the cavity leading to the CTS-binding site in Na+ ,K+ -ATPase in all conformations with high affinity to CTS.


Assuntos
Venenos de Anfíbios/química , Bufanolídeos/química , Glicosídeos Cardíacos/síntese química , Cardiotônicos/síntese química , ATPase Trocadora de Sódio-Potássio/química , Marcadores de Spin/síntese química , Venenos de Anfíbios/metabolismo , Animais , Sítios de Ligação , Bufanolídeos/metabolismo , Glicosídeos Cardíacos/metabolismo , Cardiotônicos/metabolismo , Cátions Monovalentes , Espectroscopia de Ressonância de Spin Eletrônica , Rim , Cinética , Ligantes , Simulação de Acoplamento Molecular , Ouabaína/química , Ouabaína/metabolismo , Potássio/química , Potássio/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Sódio/química , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/isolamento & purificação , ATPase Trocadora de Sódio-Potássio/metabolismo , Relação Estrutura-Atividade , Suínos , Termodinâmica
12.
Sci Rep ; 6: 29155, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27377465

RESUMO

Cardiotonic steroids (CTS) are clinically important drugs for the treatment of heart failure owing to their potent inhibition of cardiac Na(+), K(+)-ATPase (NKA). Bufadienolides constitute one of the two major classes of CTS, but little is known about how they interact with NKA. We report a remarkable stereoselectivity of NKA inhibition by native 3ß-hydroxy bufalin over the 3α-isomer, yet replacing the 3ß-hydroxy group with larger polar groups in the same configuration enhances inhibitory potency. Binding of the two (13)C-labelled glycosyl diastereomers to NKA were studied by solid-state NMR (SSNMR), which revealed interactions of the glucose group of the 3ß- derivative with the inhibitory site, but much weaker interactions of the 3α- derivative with the enzyme. Molecular docking simulations suggest that the polar 3ß-groups are closer to the hydrophilic amino acid residues in the entrance of the ligand-binding pocket than those with α-configuration. These first insights into the stereoselective inhibition of NKA by bufadienolides highlight the important role of the hydrophilic moieties at C3 for binding, and may explain why only 3ß-hydroxylated bufadienolides are present as a toxic chemical defence in toad venom.


Assuntos
Bufanolídeos/química , Bufanolídeos/farmacologia , Glicosídeos Cardíacos/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Animais , Bufanolídeos/síntese química , Bufonidae , Isótopos de Carbono , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Glicosídeos Cardíacos/química , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Simulação de Acoplamento Molecular , ATPase Trocadora de Sódio-Potássio/metabolismo , Estereoisomerismo , Temperatura
13.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 4): 282-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27050261

RESUMO

Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Šwith full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions.


Assuntos
Rim/enzimologia , ATPase Trocadora de Sódio-Potássio/isolamento & purificação , Animais , Bovinos , Cristalização , Cristalografia por Raios X , Modelos Moleculares , ATPase Trocadora de Sódio-Potássio/química
14.
Methods Mol Biol ; 1377: 5-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26695017

RESUMO

The method of purification of Na,K-ATPase from pig kidney is based on a differential centrifugation and SDS-treatment of a microsomal preparation. The yield is 0.4 mg protein per 1 g tissue with the specific (ouabain-sensitive) activity of 25-28 µmol Pi/min per mg protein and nucleotide binding capacity of 3 nmol/mg. The protein/lipid ratio is 1/1 (mg/mg) with a protein purity of ~80 %.


Assuntos
Rim/enzimologia , Biologia Molecular/métodos , ATPase Trocadora de Sódio-Potássio/isolamento & purificação , Animais , Rim/química , Cinética , Nucleotídeos/química , Ouabaína/química , ATPase Trocadora de Sódio-Potássio/química , Suínos
15.
Methods Mol Biol ; 1377: 403-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26695051

RESUMO

Nanodiscs are disc-shaped self-assembled lipid bilayers encircled by membrane scaffolding proteins derived from Apolipoprotein A-1 (apo A-1). They constitute a versatile tool for studying membrane proteins since reconstitution into nanodiscs allows studies of the membrane proteins in detergent-free aqueous solutions in a lipid bilayer. Here, we apply the technique to the Na(+),K(+)-ATPase (NKA) from pig kidney using Membrane Scaffolding Protein 1 D1 (MSP1D1). Contrary to other reports, the nanodiscs obtained by our protocol are built up of the native lipids originally present in the detergent solubilized sample together with the NKA.


Assuntos
Nanotecnologia/métodos , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Apolipoproteína A-I/química , Bicamadas Lipídicas/química , ATPase Trocadora de Sódio-Potássio/química , Solubilidade , Suínos
16.
Biochemistry ; 54(47): 7041-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26538123

RESUMO

This paper addresses the question of long-range interactions between the intramembranous cation binding sites and the cytoplasmic nucleotide binding site of the ubiquitous ion-transporting Na,K-ATPase using (13)C cross-polarization magic-angle spinning (CP-MAS) solid-state nuclear magnetic resonance. High-affinity ATP binding is induced by the presence of Na(+) as well as of Na-like substances such as Tris(+), and these ions are equally efficient promoters of nucleotide binding. CP-MAS analysis of bound ATP with Na,K-ATPase purified from pig kidney membranes reveals subtle differences in the nucleotide interactions within the nucleotide site depending on whether Na(+) or Tris(+) is used to induce binding. Differences in chemical shifts for ATP atoms C1' and C5' observed in the presence of Na(+) or Tris(+) suggest alterations in the residues surrounding the bound nucleotide, hydrogen bonding, and/or conformation of the ribose ring. This is taken as evidence of a long-distance communication between the Na(+)-filled ion sites in the membrane interior and the nucleotide binding site in the cytoplasmic domain and reflects the first conformational change ultimately leading to phosphorylation of the enzyme. Stopped-flow fluorescence measurements with the nucleotide analogue eosin show that the dissociation rate constant for eosin is larger in Tris(+) than in Na(+), giving kinetic evidence of the difference in structural effects of Na(+) and Tris(+). According to the recent crystal structure of the E1·AlF4(-)·ADP·3Na(+) form, the coupling between the ion binding sites and the nucleotide side is mediated by, among others, the M5 helix.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Cátions Monovalentes/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Potássio/metabolismo , Ligação Proteica , ATPase Trocadora de Sódio-Potássio/química , Suínos
17.
J Nat Prod ; 78(6): 1262-70, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25993619

RESUMO

Tricyclic clerodane diterpenes (TCDs) are natural compounds that often show potent cytotoxicity for cancer cells, but their mode of action remains elusive. A computationally based similarity search (CDRUG), combined with principal component analysis (ChemGPS-NP) and docking calculations (GOLD 5.2), suggested TCDs to be inhibitors of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump, which is also the target of the sesquiterpene lactone thapsigargin. Biochemical studies were performed with 11 TCDs on purified rabbit skeletal muscle sarcoplasmic reticulum membranes, which are highly enriched with the SERCA1a isoform. Casearborin D (2) exhibited the highest affinity, with a KD value of 2 µM and giving rise to complete inhibition of SERCA1a activity. Structure-activity relationships revealed that functionalization of two acyl side chains (R1 and R4) and the hydrophobicity imparted by the aliphatic chain at C-9, as well as a C-3,C-4 double bond, play crucial roles for inhibitory activity. Docking studies also suggested that hydrophobic interactions in the binding site, especially with Phe256 and Phe834, may be important for a strong inhibitory activity of the TCDs. In conclusion, a novel class of SERCA inhibitory compounds is presented.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Diterpenos Clerodânicos/isolamento & purificação , Diterpenos Clerodânicos/farmacologia , Erros Inatos do Metabolismo dos Aminoácidos , Animais , Sítios de Ligação , Diterpenos Clerodânicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Retículo Endoplasmático/metabolismo , Humanos , Doenças Mitocondriais , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Coelhos , Retículo Sarcoplasmático/metabolismo , Sarcosina Desidrogenase/deficiência , Relação Estrutura-Atividade , Tapsigargina/farmacologia
18.
Biochim Biophys Acta ; 1848(5): 1212-23, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25687971

RESUMO

Urea interacts with the Na,K-ATPase, leading to reversible as well as irreversible inhibition of the hydrolytic activity. The enzyme purified from shark rectal glands is more sensitive to urea than Na,K-ATPase purified from pig kidney. An immediate and reversible inhibition under steady-state conditions of hydrolytic activity at 37°C is demonstrated for the three reactions studied: the overall Na,K-ATPase activity, the Na-ATPase activity observed in the absence of K+ as well as the K+-dependent phosphatase reaction (K-pNPPase) seen in the absence of Na+. Half-maximal inhibition is seen with about 1M urea for shark enzyme and about 2M urea for pig enzyme. In the presence of substrates there is also an irreversible inhibition in addition to the reversible process, and we show that ATP protects against the irreversible inhibition for both the Na,K-ATPase and Na-ATPase reaction, whereas the substrate paranitrophenylphosphate leads to a slight increase in the rate of irreversible inhibition of the K-pNPPase. The rate of the irreversible inactivation in the absence of substrates is much more rapid for shark enzyme than for pig enzyme. The larger number of potentially urea-sensitive hydrogen bonds in shark enzyme compared to pig enzyme suggests that interference with the extensive hydrogen bonding network might account for the higher urea sensitivity of shark enzyme. The reversible inactivation is interpreted in terms of domain interactions and domain accessibilities using as templates the available crystal structures of Na,K-ATPase. It is suggested that a few interdomain hydrogen bonds are those mainly affected by urea during reversible inactivation.


Assuntos
Trifosfato de Adenosina/metabolismo , Inibidores Enzimáticos/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Ureia/química , Animais , Inibidores Enzimáticos/farmacologia , Ligação de Hidrogênio , Hidrólise , Cinética , Modelos Biológicos , Modelos Moleculares , Nitrofenóis/metabolismo , Compostos Organofosforados/metabolismo , Conformação Proteica , Desnaturação Proteica , Estrutura Terciária de Proteína , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , Squalus acanthias , Relação Estrutura-Atividade , Especificidade por Substrato , Suínos , Temperatura , Ureia/farmacologia
19.
Proc Natl Acad Sci U S A ; 112(6): 1755-60, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25624492

RESUMO

Cardiotonic steroids (CTSs) are specific and potent inhibitors of the Na(+),K(+)-ATPase, with highest affinity to the phosphoenzyme (E2P) forms. CTSs are comprised of a steroid core, which can be glycosylated, and a varying number of substituents, including a five- or six-membered lactone. These functionalities have specific influence on the binding properties. We report crystal structures of the Na(+),K(+)-ATPase in the E2P form in complex with bufalin (a nonglycosylated CTS with a six-membered lactone) and digoxin (a trisaccharide-conjugated CTS with a five-membered lactone) and compare their characteristics and binding kinetics with the previously described E2P-ouabain complex to derive specific details and the general mechanism of CTS binding and inhibition. CTSs block the extracellular cation exchange pathway, and cation-binding sites I and II are differently occupied: A single Mg(2+) is bound in site II of the digoxin and ouabain complexes, whereas both sites are occupied by K(+) in the E2P-bufalin complex. In all complexes, αM4 adopts a wound form, characteristic for the E2P state and favorable for high-affinity CTS binding. We conclude that the occupants of the cation-binding site and the type of the lactone substituent determine the arrangement of αM4 and hypothesize that winding/unwinding of αM4 represents a trigger for high-affinity CTS binding. We find that the level of glycosylation affects the depth of CTS binding and that the steroid core substituents fine tune the configuration of transmembrane helices αM1-2.


Assuntos
Bufanolídeos/metabolismo , Digoxina/metabolismo , Modelos Moleculares , Ouabaína/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Bufanolídeos/química , Cristalografia por Raios X , Digoxina/química , Fluorescência , Glicosilação , Cinética , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Suínos , Difração de Raios X
20.
Chem Res Toxicol ; 27(12): 2082-92, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25361285

RESUMO

Digitalis-like compounds (DLCs) comprise a diverse group of molecules characterized by a cis-trans-cis ring-fused steroid core linked to a lactone. They have been used in the treatment of different medical problems including heart failure, where their inotropic effect on heart muscle is attributed to potent Na(+),K(+)-ATPase inhibition. Their application as drugs, however, has declined in recent past years due to their small safety margin. Since human Na(+),K(+)-ATPase is represented by four different isoforms expressed in a tissue-specific manner, one of the possibilities to improve the therapeutic index of DLCs is to exploit and amend their isoform selectivity. Here, we aimed to reveal the determinants of selectivity of the ubiquitously expressed α1 isoform and the more restricted α2 isoform toward several well-known DLCs and their hydrogenated forms. Using baculovirus to express various mutants of the α2 isoform, we were able to link residues Met(119) and Ser(124) to differences in affinity between the α1 and α2 isoforms to ouabain, dihydro-ouabain, digoxin, and dihydro-digoxin. We speculate that the interactions between these amino acids and DLCs affect the initial binding of these DLCs. Also, we observed isoform selectivity for DLCs containing no sugar groups.


Assuntos
Aminoácidos/metabolismo , Glicosídeos Digitálicos/metabolismo , Isoenzimas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Aminoácidos/química , Isoenzimas/química , Isoenzimas/genética , Mutação , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...